DRAM scaling challenges and solutions in LPDDR4 context

Kishore Kasamsetty
Product Marketing Director, Cadence
MemCon 2014
Agenda

- Mobile DRAM drivers
- DRAM scaling trends/challenges
- LPDDR4 enhancements for density scaling
 - Non 2N devices
 - PPR (Post package Repair)
 - TRR (Target Row Refresh)
 - DDR IP implications
- LPDDR4 enhancements for bandwidth scaling
 - Multi command channels per die
 - DDR IP implications
Growth of Mobile Applications
Drivers for DRAM BW and capacity

• Relentless growth of mobile applications
• DRAM bandwidth drivers
 – Higher resolution displays (1080p/2K/4K), larger displays
 – Game console class gaming
 – Multi core processing
• DRAM capacity drivers
 – Sophisticated OS with larger footprint
 – Multi processing
 – Integrated radios/sensors in application processors
• DRAM solutions perennial challenges
 – Bandwidth, density per die, power
 – LPDDR4 is first generation that needs to innovate on all three metrics beyond what PC DRAM can deliver
• DRAM density growth flattening
 – 4x every 3 years not happening any more
• Maintaining storage capacitance at reduced feature size
 – Reliability challenges
• High yield DRAM column cycle (CAS frequency) has remained constant (200-250Mhz) over last 10 years
 – DRAM processes optimized for capacitance and not speed
• Higher bandwidth achieved by increasing prefetch size
 – Use fast IO for higher bit rates
 – Get more data from same address each cycle

DRAM bandwidth scaling history

<table>
<thead>
<tr>
<th>Device</th>
<th>Pre-fetch/ Minimum access for x32 system</th>
<th>Typical Data rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRAM</td>
<td>1 = 4 bytes</td>
<td>200 Mbps</td>
</tr>
<tr>
<td>DDR1</td>
<td>2 = 8 bytes</td>
<td>400 Mbps</td>
</tr>
<tr>
<td>DDR2</td>
<td>4 = 16 bytes</td>
<td>800 Mbps</td>
</tr>
<tr>
<td>DDR3</td>
<td>8 = 32 Bytes</td>
<td>1600 Mbps</td>
</tr>
<tr>
<td>DDR4</td>
<td>16 = 64 bytes ?</td>
<td>3200 Mbps</td>
</tr>
<tr>
<td>LPDDR4</td>
<td>16 = 64 bytes ?</td>
<td>3200 Mbps</td>
</tr>
</tbody>
</table>

Too big of access size. Effective useful bandwidth is low.
LPDDR4 offers highest density DRAM

- **Mobile systems benefit from high density per die**
 - Small form factor, BOM cost
 - LPDDR4 spec allows higher densities than DDR4
- **DRAM yields challenging at higher densities**
 - Non 2N density devices introduced in LPDDR4

<table>
<thead>
<tr>
<th>Memory Density (per Die)</th>
<th>4Gb</th>
<th>6Gb</th>
<th>8Gb</th>
<th>12Gb</th>
<th>16Gb</th>
<th>24Gb</th>
<th>32Gb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Density (per channel)</td>
<td>2Gb</td>
<td>3Gb</td>
<td>4Gb</td>
<td>6Gb</td>
<td>8Gb</td>
<td>12Gb</td>
<td>16Gb</td>
</tr>
<tr>
<td>Configuration</td>
<td>16Mb x 16DQ x 8 banks x 2 channels</td>
<td>24Mb x 16DQ x 8 banks x 2 channels</td>
<td>32Mb x 16DQ x 8 banks x 2 channels</td>
<td>48Mb x 16DQ x 8 banks x 2 channels</td>
<td>64Mb x 16DQ x 8 banks x 2 channels</td>
<td>TBD x 16DQ x TBD banks x 2 channels</td>
<td>TBD x 16DQ x TBD banks x 2 channels</td>
</tr>
<tr>
<td>Number of Rows (per channel)</td>
<td>16,384</td>
<td>24,576</td>
<td>32,768</td>
<td>49,152</td>
<td>65,536</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
LPDDR4 offers highest density DRAM

- **Mobile systems benefit from high density per die**
 - Small form factor, BOM cost
 - LPDDR4 spec allows higher densities than DDR4
- **DRAM yields challenging at higher densities**
 - Non 2N density devices introduced in LPDDR4

<table>
<thead>
<tr>
<th>Memory Density (per Die)</th>
<th>4Gb</th>
<th>6Gb</th>
<th>8Gb</th>
<th>12Gb</th>
<th>16Gb</th>
<th>24Gb</th>
<th>32Gb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Density (per channel)</td>
<td>2Gb</td>
<td>3Gb</td>
<td>4Gb</td>
<td>6Gb</td>
<td>8Gb</td>
<td>12Gb</td>
<td>16Gb</td>
</tr>
<tr>
<td>Configuration</td>
<td>16Mb x 16DQ x 8 banks x 2 channels</td>
<td>24Mb x 16DQ x 8 banks x 2 channels</td>
<td>32Mb x 16DQ x 8 banks x 2 channels</td>
<td>48Mb x 16DQ x 8 banks x 2 channels</td>
<td>64Mb x 16DQ x 8 banks x 2 channels</td>
<td>TBD x 16DQ x TBD banks x 2 channels</td>
<td>TBD x 16DQ x TBD banks x 2 channels</td>
</tr>
<tr>
<td>Number of Rows (per channel)</td>
<td>16,384</td>
<td>24,576</td>
<td>32,768</td>
<td>49,152</td>
<td>65,536</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Non-2N density devices implications

- **Transparent to CPU/ host system, see total address space**
- **DRAM controllers today**
 - Support flexible address mapping schemes (Bank/Row/Rank addresses)
 - DRAM controllers typically look at single bit to determine page/bank/rank changes/rollovers
- **DRAM controllers with Non 2N devices**
 - Need multi bit address compare to determine (Page/Rank/Device)
 - Should not impact performance/throughput with correct implementation
LPDDR4 introduces Post package repair (PPR)

- Higher density DRAM susceptible to increased single row failures
- DRAM devices historically have row redundancy circuits to address these
 - Improve yields at die sort, uses “efuse” technology
 - Bad rows remapped to built in redundant rows
 - Not exposed to host system
- LPDDR4 standard includes PPR
 - Repair scheme accessible to controller
LPDDR4 post package repair

- Simple command control repair protocol defined in LPDDR4 (~1000ms)
- Applications
 - Multi die assembly: Do BIST check and repair failing rows
 - System initialization: MC can do BIST check and repair failing rows
 - Field failures: Need software tracking to accumulate ECC failures and determine failing rows
- Memory controllers should check for unintended PPR entry possibilities
 - Certified memory models (VIP) can check and flag these
“Row Hammering”
Frequently accessed rows (target rows) disturbs adjacent rows (victim)

- LPDDR4 DRAM requires controllers to do repair using Target row refresh mode (TRR) when a threshold of “victim” hits happen on adjacent rows
- Very expensive to track the activity for thousands and rows
- Statistical approaches and prior application knowledge may yield practical solutions

1. ISCA 2014 “Flipping Bits in Memory without accessing them” Intel Labs and CMU
DRAM bandwidth scaling history

• High yield DRAM column cycle (CAS frequency) has remained constant (200-250Mhz) over last 10 years
 – $/bit reduction drives DRAM economics

• Higher bandwidth achieved by increasing prefetch size
 – Get more data each cycle and use fast IO to increase bandwidth

<table>
<thead>
<tr>
<th>Device</th>
<th>Pre-fetch/ Minimum access for x32 system</th>
<th>Typical Data rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRAM</td>
<td>1 = 4bytes</td>
<td>200 Mbps</td>
</tr>
<tr>
<td>DDR1</td>
<td>2 = 8 bytes</td>
<td>400 Mbps</td>
</tr>
<tr>
<td>DDR2</td>
<td>4 = 16 bytes</td>
<td>800 Mbps</td>
</tr>
<tr>
<td>DDR3</td>
<td>8 = 32 Bytes</td>
<td>1600 Mbps</td>
</tr>
<tr>
<td>DDR4</td>
<td>16 = 64 bytes ?</td>
<td>3200 Mbps</td>
</tr>
<tr>
<td>LPDDR4</td>
<td>16 = 64 bytes ?</td>
<td>3200 Mbps</td>
</tr>
</tbody>
</table>

Too big of access size. Effective useful bandwidth is low
DRAM bandwidth scaling: DDR4 solution

- Two Bank Groups
 - \(t_{CCD_L} \) is longer than \(t_{CCD_S} \)
 - Access size stays 32 bytes
 - Full bandwidth needs ping-pong access

- Continuous access to a single bank group maxes at 66% utilization
DRAM bandwidth scaling: LPDDR4 solution

- Two command channels
 - 32 bit system will have 2 command channels
 - Minimum access size stays 32 Bytes
- Independent control allows better utilization for localized data
- Independent control allows for additional power-down flexibility
- Down side
 - Potential for more pins (6 pin command helps)
 - Complicated PCB/PKG routing for dual mode memory systems
• Increased number of channels force changes to ballout
• Difficulties for doing dual mode channel systems
LPDDR4 focused SoC PKG design

- LPDDR4 optimized placement can work for LPDDR3
- Still need long routes in package and Soc for LPDDR3
- PHY/Controller flexibility is needed to make it work
Controller and PHY IP Techniques to ease PCB and Package routing

- DRAM Controller and PHY IP may employ techniques to ease the burden and provide package/PCB routing flexibility for multi-mode
 - Per bit deskew on CA bus
 - CA bit swapping
 - DQ bit swapping
 - Dual-mode (SDR and DDR) support for CA
Summary

- LPDDR4 added PPR, TRR, non 2N density devices to meet the high per die density requirements
- LPDDR4 introduces dual channel systems to scale and meet bandwidth requirements
- Cadence offers Controller, PHY and VIP solutions need to optimally and reliably work with LPDDR4 based systems